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Abstract

The analysis of rapidly!moving thermomechanical surface sources is extended to the study of buried
thermomechanical sources that move parallel to the interface of two welded dissimilar thermoelastic half!
spaces at a constant subcritical speed[ The sources are manifest as body force line loads in the coupled
equations of thermoelasticity\ and a 1!D steady!state situation is treated[ Exact integral transform solutions
are obtained\ and expressions for the displacements and temperature changes are generated by analytical
inversion of robust asymptotic versions of the transforms[

These expressions show that thermoelastic coupling e}ects increase with source speed\ and that the thermal
source is always manifest in combination with a component of the mechanical source\ i[e[ an e}ective thermal
source term exists[ The expressions also exhibit component functions that are in e}ect hybrids of functions
that are seen in purely thermal and isothermal elastic solutions[

The critical source speed is de_ned as the minimum of the two asymptotic thermoelastic Rayleigh speeds
in the half!spaces and\ when it exists\ the asymptotic thermoelastic Stoneley speed[ Exact expressions for
these speeds are given\ and used to present some typical values[ Þ 0887 Elsevier Science Ltd[ All rights
reserved[

0[ Introduction

Brock and Georgiadis "0886# and Brock et al[ "0886# have treated rapid motion by ther!
momechanical loads over the surfaces of thermoelastic half!spaces[ These half!spaces are modeled
by the coupled forms of the momentum balance and thermal di}usion equations "Chadwick\ 0859 ^
Boley and Weiner\ 0874#[ The coupled thermoelastic studies demonstrate that\ due to the existence
of a small\ i[e[ O"09−3# mm\ thermoelastic characteristic length in the equations\ robust asymptotic
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solutions can be obtained analytically[ Moreover\ these solutions show that the in~uence of
thermoelastic coupling is noticeable\ especially at higher load speeds[

This work extends these e}orts by considering buried thermomechanical sources that translate
parallel to the interfaces of dissimilar coupled thermoelastic half!spaces that are rigidly welded[ As
in the previous work\ the sources are line loads moving at a constant speed\ so that a 1!D steady!
state analysis can be performed in terms of half!planes[ In this case\ only sub!critical speeds are
considered[

In the next section\ the problem is formulated\ and addressed by transform methods[ From
exact transform solutions\ robust asymptotic analytical expressions for the displacements and
temperature changes are then obtained by inversion[ These expressions show the same types of
thermoelastic coupling e}ects seen*especially at high source speeds*by Brock and Georgiadis
"0886# and Brock et al[ "0886#[ In particular\ thermoelastic constants in~uence both the coe.cients
and arguments of various functions that constitute the expressions[ In the present work\ moreover\
some of the functions themselves are seen to be\ in essence\ hybrids of responses seen in purely
mechanical and thermal analyses[ It is also found that the body force term in the coupled thermal
di}usion equation is always manifest in solution expressions in a linear combination with the body
force component of the momentum balance equation that lies parallel to the source motion
direction[ That is\ the displacements and temperature change depend on pure mechanical loading
and an e}ective thermal loading[

1[ Problem formulation

Consider two half!spaces of dissimilar isotropic homogeneous linearly thermoelastic materials
that are rigidly welded together over the x?z?!plane\ where "x?\ y?\ z?# are Cartesian coordinates[
The half!space y? × 9 is denoted as solid 0\ and its _eld variables and thermoelastic properties
carry the subscript 0 ^ analogously\ solid 1 comprises the half!space y? ³ 9\ and its _eld variables
and thermoelastic properties carry the subscript 1[ Both solids are initially at rest at the uniform
"absolute# temperature T9[ Then constant thermomechanical body forces are induced at time t � 9
along an in_nite line that lies parallel to the z?!axis and translates in the positive x?!direction at a
subcritical constant speed v[ No generality is lost by _xing the line|s path of travel at a distance d
from the interface in solid 0 "y? × 9#[

For convenience the moving Cartesian system

x � x?−vt\ y � y?\ z � z? "0#

is introduced so that the line of sources is always located at "x\ y# �"9\ d#[ No dependence on z is
expected\ so that solids 0 and 1 can be treated as the half!planes y × 9 and y ³ 9\ respectively\ and
the relevant problem geometry can be represented as Fig[ 0[ There the constants "Bx\ By# are the
x! and y!components of the mechanical body force\ while the constant Bq represents the scalar
thermal body force[ In terms of the moving coordinate system\ time derivatives take the form
"Bowen\ 0878#

1

1t
−v

1

1x
"1#
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Fig[ 0[ Thermomechanical sources moving near interface of welded solids[

where the _rst operator is to be taken in the moving system\ and the second operator corrects for
the motion of the system[ If\ as in this analysis\ the steady!state is of interest\ then the _rst operator
in "1# can be neglected\ and all the _eld variables treated as functions of "x\ y# only[ Then the
governing steady!state coupled thermoelastic _eld equations for solid 0 "y × 9# can be obtained
from\ respectively\ the momentum balance and thermal di}usion laws "Chadwick\ 0859 ^ Boley
and Weiner\ 0874 ^ Achenbach\ 0862# as

m91u¦"l¦m#9D−x9"2l¦1m#9u−rv1 11u

1x1
¦Bd"x#d"y−d# � 9 "2a#

k91u¦v
1

1x
ðcvru¦x9"2l¦1m#T9DŁ¦B0d"x#d"y−d# � 9 "2b#

where the subscript 0 is understood[ In "2# d is the Dirac function\ u"x\ y# �"ux\ uy# is the dis!
placement vector\ u"x\ y# is the change in temperature from the value T9\ B �"Bx\ By#\ D is the 1!
D dilatation\ "l\ m# are the Lame� constants\ r is the mass density\ and "k\ x9\ cv# are\ respectively\ the
thermal conductivity\ coe.cient of expansion and speci_c heat[ Introduction of the thermoelastic
parameters

vd �X
l¦1m

r
\ vr �X

m

r
\ sd �

0
vd

\ sr �
0
vr

"3a#

m �
vd

vr

\ c �
v
vd

"3b#

x � x9"3−2m1#\ h �
kvr

mmcv

\ o �
T9

cv 0
x
m

vr1
1

"3c#

allows the governing _eld eqns "2# to be written as

91u¦"m1−0#9D¦x9u−m1c1 11u

1x1
¦

0
m

Bd"x#d"y−d# � 9 "4a#
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h91u¦c
1

1x 0u−
m1o

x
D1¦

Bq

rcvvd

d"x#d"y−d# � 9[ "4b#

In terms of "3#\ the associated constitutive equations "Achenbach\ 0862# give the 1!D stress tensor

0
m

s � 9u¦u9¦ð"m1−1#D¦xuŁI "5#

where I is the identity tensor[ In "3# the quantities "vd\ vr# are the isothermal dilatational and
rotational wave speeds\ respectively\ and "sd\ sr# are the corresponding slownesses\ so that "m\ x\ c\ o#
are dimensionless\ and h has the dimensions of length[ In particular\ c is the dimensionless source
speed\ while h is the thermoelastic characteristic length and o is the well!known "Chadwick\ 0859#
dimensionless coupling constant[ It can be shown "Sokolniko}\ 0845 ^ Chadwick\ 0859 ^ Brock\
0881# for many materials that

m × z1\ o � O"09−1#\ h � O"09−3# mm[ "6#

The order of o in particular is often used to justify dropping the corresponding term from "4b#\
thereby uncoupling this thermal di}usion equation from the momentum balance eqn "4a# "Boley
and Weiner\ 0874#[ Equations analogous to "3#Ð"6# exist for solid 1 "y ³ 9#\ with subscript 1
understood\ but no "Bq\ B#!terms present[ For now\ subcritical v will be taken to mean

v ³ min"vr0\ vr1#[ "7#

That is\ the source speed does not exceed the lowest rotational wave speed among the two solids[
The welded bond between the two solids implies continuity of displacement\ tractions\ temperature
change and heat ~ux along the interface\ i[e[

u0−u1 � sxy0−sxy1 � sy0−sy1 � u0−u1 �
1u0

1y
−

1u1

1y
� 9[ "8#

In addition\ experience with 1!D versions of the purely mechanical Kelvin problem "Sokolniko}\
0845# suggest that "u0\ u0# and "u1\ u1# should behave no worse than logarithmically as
zx1¦y1 : �\ and should be continuous for all y × 9\ x � 9 and y ³ 9\ respectively[

The problem formulation de_ned by these conditions and "3#Ð"8# is tractable\ but the Dirac
function nature of the non!homogeneous terms in "4a\b# for y × 9 suggest "Stakgold\ 0856# the
following alternative formulation ] if the solution _elds "u"−#

0 \ u"−#
0 # and "u"¦#

0 \ u"¦#
0 # are associated

with\ respectively\ the regions 9 ³ y ³ d and y × d\ the aforementioned continuity combined with
integration in y across the line y � d gives the matching:jump conditions

u"¦#
0 −u"−#

0 � u"¦#
0 −u"−#

0 � 9 "09a#
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0−0# $
1

1x
"u"¦#
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h0 0
1u"¦#

0

1y
−

1u"−#
0

1y 1¦0
m1oc

x 10

1

1x
"v"¦#

0 −v"−#
0 # � −

Bq

"rcvvd#0

d"x# "09d#

along y � d for the two _elds[ Equation "8# then gives the matching conditions for the _elds
"u"−#

0 \ u"−#
0 # and "u1\ u1#[ In this manner\ an alternative formulation of three layers

"y ³ 9\ 9 ³ y ³ d\ y × d# arises\ but one in which the governing _eld equations are now all homo!
geneous\ i[e[ the form of "4a\b# less "B\ Bq# holds for all three layers[ This procedure avoids the
necessity of _nding particular solutions[ The alternative problem formulation is addressed by
transform methods in the next section[

2[ Transform solution

To solve the problem formulated above\ the bilateral Laplace transform "van der Pol and
Bremmer\ 0849# and its inverse operation

f � � g
�

−�

f"x# e−px dx\ f"x# �
0

1pi g f � epx dp "00a\b#

are introduced[ Here p is\ in general\ complex and integration in "00b# is taken along the Bromwich
contour[ Application of "00a# to "4# with "B\ Bq# dropped out gives the following set of general
transform solutions ]
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Here the coe.cients "A2\ B2\ C2# are arbitrary functions of p and

a2 � a2z−p1\ b � bz−p1\ v2 �
m1

x
"0−c1−a1

2# "02a#

a2 �X 0¦
c
p
"t¦2t−#1\ b � z0−m1c1\ K � m1c1−1 "02b#
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1t2 �X 0z−cp2
0

zh1
1

¦
o

h
\ v¦v− �

m3c2o

x1ph
"02c#

where Re"a2\ b# − 9 in the cut p!plane[ It should be noted that restriction "7# guarantees that the
constant b is real and positive[

Because there are three layers "01a\b# require that 07 coe.cients be determined from "8#\ "09#
and boundedness conditions[ The latter in particular require that "u"¦#

0 \ u"¦#
0 #� and "u1\ u1#� not

become unbounded as y : � and y : −�\ respectively[ Therefore\ in "01a\b# we must have

A"¦#
0¦ � B "¦#

0¦ � C "¦#
0¦ � A1− � B1− � C1− � 9[ "03#

Application of "00a# to the matching conditions "8# and "09# in view of "01# and "03# gives twelve
equations that can be solved analytically for the other coe.cients[ Speci_cally\ we have

&
A"−#

0¦

B "−#
0¦

C "−#
0¦
'� 0

1"v0¦−v0−#p1 &
A9

B9

"v0¦−v0−#pC9
' "04a#

&
A"¦#

0−

B "¦#
0−

C "¦#
0−
'� 0

1"v0¦−v0−#p1 &
A?9
B?9

"v0¦−v0−#pC?9 '¦&
A"−#

0−

B "−#
0−

C "−#
0−
' "04b#

where "A"−#
0− \ B "−#

0− \ C "−#
0− # are given by

&
A"−#

0−

B "−#
0−

C "−#
0−
'� 0

1V0

K

H

H

H

H

H

H

k

E¦v1¦−D¦v0− E3v1−−D3v0− 00¦
Q

a0¦b11
v0−

p

D2v0¦−E2v1¦ D−v0¦−E−v1− 00¦
Q

a0−b11
v0¦

p

p"Q¦a1¦b0# p"Q¦a1−b0#
b0

b1

P1¦P0

L

H

H

H

H

H

H

l

&
A1¦

B1¦

C1¦
' "05#

and "A1¦\ B1¦\ C1¦# are\ in turn\ de_ned by

&
A1¦

B1¦

pC1¦
'� 0

p1S &
a0¦L00 a0−L01 L02

−a0¦L10 −a0−L11 L12

a0¦b1L20 a0−b1L21 b1L22
' &

A9

B9

p1C9
'[ "06#

The coe.cients of the matrix L are

L00 � V0"a0−¦a1−#"b0P1−b1P0#v1−¦S−v0¦ "07a#

L01 � V0"a0¦¦a1−#"b0P1−b1P0#v1−¦S3v0− "07b#

L02 �"a0¦−a0−#"P1Q−P0a1−b1#v0¦v0−

¦"a0−¦a1−#"Q−a0¦b1#v0−v1−−"a0¦¦a1−#"Q−a0−b1#v0¦v1− "07c#
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L10 � V0"a0−¦a1¦#"b0P1−b1P0#v1¦¦S2v0¦ "07d#

L11 � V0"a0¦¦a1¦#"b0P1−b1P0#v1¦¦S¦v0− "07e#

L12 �"a0−−a0¦#"P1Q−P0a1¦b1#v0¦v0−

¦"a0¦¦a1¦#"Q−a0−b1#v0¦v1¦−"a0−¦a1¦#"Q−a0¦b1#v0−v1¦ "07f#

L20 � V0"a1¦¦a0−#"Q−a1−b0#v1¦−V0"a0−¦a1−#"Q−a1¦b0#v1−

¦"a1¦−a1−#"P0Q−P1a0−b0#v0¦ "07g#

L21 � V0"a0¦¦a1¦#"Q−a1−b0#v1¦−V0"a0¦¦a1−#"Q−a1¦b0#v1−

¦"a1¦−a1−#"P0Q−P1a0¦b0#v0− "07h#

L22 �"a0¦−a0−#"a1¦−a1−#"v1¦v1−−P0P1v0¦v0−#

¦V0"a0−¦a1¦#"P1a0¦−P0a1−#v0−v1¦¦V0"a0¦¦a1−#"P1a0−−P0a1¦#v0¦v1−

−V0"a0¦¦a1¦#"P1a0−−P0a1−#v0¦v1¦−V0"a0−¦a1−#"P1a0¦−P0a1¦#v0−v1−[ "07i#

In these formulae\ the thermomechanical source terms are manifest in the quantities

&
A9 ea0¦d

B9 ea0−d

C9 eb0d '�
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H

H

H

H

H

H

k

−
v0−

a0¦
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−
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−0 9

L

H

H

H

H

H

H

l

&
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' "08a#

&
A?9 e−a0¦d

B?9 e−a0−d
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−
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a0−

b0

p
0 9

L
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H

H

H

l

&
bx

by

bq
' "08b#

where

bx �
Bx

"mm1c1#0

\ by �
By

"mm1c1#0

\ bq � 0
h

rcvvd10

Bq−0
o

mxhc10

Bx[ "19aÐc#

The other previously!unde_ned quantities in "04#Ð"07# are

"E¦\ E−\ E2\ E3# �
V0

v0¦−v0− $0−0
a1¦

a0¦

\
a1−

a0−

\
a1¦

a0−

\
a1−

a0¦1% "10a#
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"D¦\ D−\ D2\ D3# �
0

v0¦−v0− $P0¦P1 0
a1¦

a0¦

\
a1−

a0−

\
a1¦

a0−

\
a1−

a0¦1% "10b#

and

S �"b0P1−b1P0#"a0¦−a0−#"a1¦−a1−#"V0v1¦v1−−V1v0¦v0−#

¦"a0−¦a1−#v0−v1−S¦¦"a0¦¦a1¦#v0¦v1¦S−

−"a0¦¦a1−#v0¦v1−S2−"a0−¦a1¦#v0−v1¦S3 "11a#
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H

k
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S−
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S3
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H

H

l

� Q1
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H
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H

k
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H

H

H

l

¦

K

H

H

H

H

k

a0¦a1¦ a0¦b1¦a1¦b0 a0¦ a1¦

a0−a1− a0−b1¦a1−b0 a0− a1−

a0−a1¦ a0−b1¦a1¦b0 a0− a1¦

a0¦a1− a0¦b1¦a1−b0 a0¦ a1−

L

H

H

H

H

l

K

H

H

H

H

k

b0b1

V0V1

−b0P
1
1

−b1P
1
0

L

H

H

H

H

l

"11b#

where

P0 � 0−V0\ P1 � 0−V1\ Q � 0−V0−V1\ V0 �
"mm1c1#0

1"m0−m1#
\ V1 �

"mm1c1#1

1"m1−m#
[ "12#

It should be noted that the common denominator term S is the steady!state coupled thermoelastic
Stoneley function "Stoneley\ 0813# for the two welded solids[ Indeed\ the constituent functions
"S¦\ S−\ S2\ S3# have the same form as the classical isothermal Stoneley function "Cagniard\
0851#[ Examination of "19c# shows\ moreover\ the coupling behavior between the thermal source
term Bq and the mechanical source term Bx that was noted at the outset[ This coupling produces
an e}ective thermal source insofar as solution response is concerned[

With "03#Ð"06# in hand "01a\b# give the complete transform solutions for the _elds "u"2#
0 \ u"2#

0 #
and "u1\ u1# in the layers "9 ³ y ³ d\ y × d# and "y ³ 9#\ respectively[ These solutions are exact\
but largely due to the p!dependence of the quantities "a02\ a12# ðsee "02b\c#Ł\ their inversion by
means of "00b# must be carried out numerically[ While several e.cient numerical schemes are
available\ e[g[ Du}y "0882#\ we use here an asymptotic form of the transform solutions are quite
robust\ yet which allow inversions to be performed analytically[

3[ Asymptotic transform results

It is known "van der Pol and Bremmer\ 0849# that asymptotic forms of the bilateral Laplace
transform valid for small =pL= give inversions that are valid for large =x:L=\ where L is any _nite
scaling length[ For the previous results\ therefore\ we substitute "03#Ð"06# into "01a\b# and treat
the expressions created as linear combinations of the loading parameters "bx\ by\ bq#[ The coe.cients
of each parameter are then expanded for small =p=\ and only the lowest!order terms preserved[ The
key step in this operation is that "02# yields the asymptotic forms

a¦ � z−lp\ a− � az−p1\ a¦ �X
l

p
\ a− � a\ v¦ � −

G
p

\ v− � −g "13a#
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a �X 0−
c1

0¦o
\ G �

m1l

x
\ g �

m1c1o

x"0¦o#
\ l �

c
h
"0¦o# "13b#

where it is noted that "6# and "7# guarantee that a is a positive real constant\ and vdz0¦o is an
asymptotic thermoelastic "adiabatic# dilatational wave speed "Achenbach\ 0862#[ However\ the
forms "13a# are actually only valid for =ph= ð 0\ so that in view of the previous observation\ the
inversions of the asymptotic forms of "01# are valid for =x:h= Ł 0[ But "6# shows that "h0\ h1# are of
the same very small magnitude order\ which implies that the inversions are robust[ This result is
not a}ected by the scale of the other characteristic length\ d\ which appears only in the exponential
arguments of the source term functions "A9\ B9\ C9# and "A?9\ B?9\ C?9#[

Because "a\ b\ l# are real and positive\ the condition Re"a2\ b# − 9 in the cut p!plane which was
imposed for boundedness upon "01a\b# requires that the asymptotic forms of both "a−\ b# given
by "13a# have the branch cuts Im"p# � 9\ =Re"p# = × 9\ while a¦ must exhibit the cut Im"p# � 9\
Re"p# × 9[

To illustrate these forms\ we present those for the displacement and temperature change ] for
y ³ 9 the asymptotic forms
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−zl1Ab a1Bb −
0
b1

Cb

−G1Abzp 9 9

L

H

H

H

H

l

"14b\c#

hold\ where the subscript n �"x\ y# in "14b# and
K

H

H

H

H

H

k

Ax

0
M00

Bx

0
M00

Cx

L

H

H

H

H

H

l

�
0

D9 &
9 M02M21−M01M22 M01M12−M02M11

9 M22 −M12

9 −M21 M11
' &

N00

N10

N20
' "15a#

K

H

H

H

H

H

k

Ay

0
M00

By

0
M00

Cy

L

H

H

H

H

H

l

�
0

D9

K

H

H

H

H

k

D9

M00

M02M21−M01M22 M01M12−M02M11

9 M22 −M12

9 −M21 M11

L

H

H

H

H

l

&
N01

N11

N21
' "15b#
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&
Ab

Bb

Cb
'� 0

D9

K

H

H

k

D9

M00

9 9

M20M12−M10M22 M22 9

M10M21−M20M11 −M21 9

L

H

H

l &
N02

M00N12

N22
' "15c#

and the elements of the non!symmetric matrices M and N are given by

&
M00 M01 M02

M10 M11 M12

M20 M21 M22
'

�

K

H

H

H

H

H

H

k

−G1V0 00¦X
l1

l01 g0P1−g1V0 −g0

−
zl1

a0

"G0P0¦G1V0# G0 0P1−
a1

a0

P01 −G0 00−
Q

a0b11
−b0zl1 Q−a1b0

b0

b1

P1−P0

L

H

H

H

H

H

H

l

"16#

&
N00

N01

N02
'�

K

H

H

H

H

H

k

g0

zl0

−g0

−
0

zl0

L

H

H

H

H

H

l

e−z−l0pd\ &
N10

N11

N12
'�

K

H

H

H

H

H

k

G0

a0

−G0

−
0
a0

L

H

H

H

H

H

l

e−a0z−p1d\ "17#

&
N20

N21

N22
'� &

−b0

−0

9 ' e−b0z−p1d[

In "14#Ð"17# the de_nitions

D9 � =M= �
V0G0G1

a0b1 00¦X
l1

l01S9 "18a#

S9 � Q1¦a0b0a1b1¦V0V1"a0b1¦a1b0#−a0b0P
1
1−a1b1P

1
0 "18b#

hold\ where "18b# is the asymptotic thermoelastic Stoneley function for v\ which has essentially
the same form as its isothermal counterpart "Cagniard\ 0851#[

For 9 ³ y ³ d the asymptotic forms are

1

K

H

H

H

H

H

k

u�0x

z−p

zp
u�0y

0
p

u�0

L

H

H

H

H

H

l

� 0
bx

z−p1
M0x¦

by

p
M"−#

0y ¦
bq

z−p1
M"−#

0u 1 &
ez−l0p"y−d#

ea0z−p1"y−d#

eb0z−p1"y−d# '
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¦0
bx

z−p1
N0x¦

by

p
N0y¦

bq

z−p1
N0u1 &

e−z−l0py

e−a0z−p1y

e−b0z−p1y ' "29a#

M0x �

K

H

H

H

H

k

9 −
0
a0

−b0

9 0 0

9 −
g0

a0

9

L

H

H

H

H

l

\ M"−#
0y �

K

H

H

H

H

k

9 0 −0

9 −a0

0
b0

−g0 g0 9

L

H

H

H

H

l

\

G0M
"−#
0u �

K

H

H

H

H

H

k

9
0
a0

9

0 −0 9

−G0X
p
l0

9 9

L

H

H

H

H

H

l

"29b#

N0n �

K

H

H

H

H

H

H

k

9 −
0
G0

B?n C?n

9 −
a0

G0

B?n
0
b0

C?n

A?n −
g0

G0

B?n 9

L

H

H

H

H

H

H

l

\ N0u �

K

H

H

H

H

H

k

9
0
G0

B?b C?b

zl0

G0

A?b
a0

G0

B?b
0
b0

C?b

A?bzp 9 9

L

H

H

H

H

H

l

"29c\d#

where the subscript n denotes "x\ y#\ the superscript "−# on "u0\ u0# is understood\ and

&
A?n
B?n
C?n'� &

M00 M01 M02

9 M?11 M?12

9 M?21 −M?22
' &

An

Bn

Cn
'\ &

A?b
B?b
C?b'� &

M?00 9 9

M10 −M?11 −M?12

−M20 M?21 −M?22
' &

Ab

Bb

Cb
'[ "20a\b#

Here the non!symmetric matrix M? is de_ned by

&
M?00 M?01 M?02

M?10 M?11 M?12

M?20 M?21 M?22
'�

K

H

H

H

H

H

H

k

−G1V0 00−X
l1

l01 M01 M02

M10 G0 0P1¦
a1

a0

P01 −G0 00¦
Q

a0b11
M20 Q¦a1b0

b0

b1

P1¦P0

L

H

H

H

H

H

H

l

[ "21#

Finally\ the asymptotic forms for y × d are
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1

K

H

H

H

H

H

k

u�0x

z−p

zp
u�0y

0
p

u�0

L

H

H

H

H

H

l

� 0
bx

z−p1
M0x¦

by

p
M"¦#

0y ¦
bq

z−p1
M"¦#

0u 1 &
ez−l0p"d−y#

ea0z−p1"d−y#

eb0z−p1"d−y#'

¦0
bx

z−p1
N0x¦

by

p
N0y¦

bq

z−p1
N0u1 &

e−z−l0py

e−a0z−p1y

e−b0z−p1y' "22a#

M"¦#
0y �

K

H

H

H

H

k

9 −0 0

9 −a0

0
b0

g0 −g0 9

L

H

H

H

H

l

\ G0M
"¦#
0u �

K

H

H

H

H

H

k

9
0
a0

9

−0 0 9

−G0X
p
l0

9 9

L

H

H

H

H

H

l

"22b#

where the superscript "¦# on "u0\ u0# is understood[

4[ Solution expressions by transform inversion

For a brief examination of solution behavior\ attention is focused on solid 1 "y ³ 9# ] study of
"14# in view of "17# indicates that "u1\ u1#� are linear combinations of generic functions of the
transform variable p[ These functions are

G�0"a\ b# � ez−p1"ay−bd#\ G�1"a\ b# �
zp

z−p
G�0"a\ b# "23a\b#

G�2 � ez−p"zl1y−zl0d#\ G�3 �
G�2

z−p
"23c\d#

G�4"a# � ez−p"azpy−zl0d#\ G�5"a# �
zp

z−p
G�4"a# "23e\f#

G�6"b# �
zp

z−p
ez−p"zl1y−bzpd# "23g#

and

I�k"a\ b# �
0
p

G�k"a\ b#"k � 0\ 1#\ I�2 �
0
p

G�2\ I�k"a# �
0
p

G�k"a#"k � 4\ 5# "24aÐc#

where "a\ b# are employed in this instance as positive real constants[ In view of the branch cuts
required for the asymptotic forms "13a#\ substitution of "24a# into the inversion operation "00b#
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allows a Bromwich contour that coincides with the entire Im"p#!axis[ Because ay−bd ¾ 9 for
y ³ 9 while Re"z−p1# − 9 in the cut p!plane\ exponential decay of the resulting integrand in
"00b# is assured for Re"p# × 9 when x ³ 9 and for Re"p# ³ 9 for x × 9[ Therefore\ Cauchy theory
can be used to change the integration path in "00b# to a contour that runs around the branch cut
Im"p# � 9\ Re"p# × 9 when x ³ 9\ and around the branch cut Im"p# � 9\ Re"p# ³ 9 when x × 9[
The result is the real integral

G0"a\ b# � −
0
p g

�

9

e−p=x= sin"ay−bd#p dp "25#

which\ by use of a standard integral table "Gradshteyn and Ryzhik\ 0854# can be evaluated as

G0"a\ b# � −
0
p

ay−bd

x1¦"ay−bd#1
[ "26#

By a similar procedure\ the result

G1"a\ b# � −
0
p

x

x1¦"ay−bd#1
"27#

is obtained from "23b#[
For "23c# the integrand branch cut is Im"p# � 9\ Re"p# × 9\ so that use of exponential decay

and Cauchy theory give a zero result for x × 9 but the formula

G2 � −
0
p g

�

9

epx sin"zl1y−zl0d#zp dp "28#

for x ³ 9[ The same integral table then gives

G2 � −
zl1y−zl0d

zp"−x#2:1
e

0
3x

"zl1y−zl0d#1 "x ³ 9# "39#

and a similar procedure for "23d# gives

G3 �
0

z−px
e

0
3x

"zl1y−zl0d#1 "x ³ 9#[ "30#

The form "23e# is in essence a product of forms similar to "23a\c#[ Therefore\ the convolution
theorem for bilateral Laplace transforms "van der Pol and Bremmer\ 0849# can be used with "26#
and "28# to produce the real integral

G4"a# � −
azl0yd

p2:1 g
�

9

e−

l0d1

3t

t2:1

dt

"x¦t#1¦a1y1
[ "31#

Similarly\ it can be shown that
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G5"a# � −
zl0d

p2:1 g
�

9

e−

l0d1

3t

t2:1

x¦t

"x¦t#1¦a1y1
dt "32#

Inversion of "23g# follows by inspection from "32# as

G6"b# �
zl1y

p2:1 g
�

9

e−

l1y1

3t

t2:1

x¦t

"x¦t#1¦b1d1
dt[ "33#

Finally\ inversions of "24# follow essentially from inde_nite integrations with respect to x of the
functions "G0\ G1\ G4\ G5# ]

I0"a\ b# � −
0
p

tan−0 x
ay−bd

"34a#

I1"a\ b# � −
0
p

lnX 0¦
x1

"ay−bd#1
"34b#

I2 � 1 erf 0
zl0d−zl1y

1z−x 1 "x ³ 9# "34c#

I4"a# � −
zl0d

p2:1 g
�

9

e−

l0d1

3t

t2:1
tan−0 x¦t

ay
dt "34d#

I5"a# � −
zl0d

p2:1 g
�

9

e−

l0d1

3t

t2:1
lnX

"x¦y#1¦a1y1

t1¦a1y1
dt[ "34e#

The results "34aÐe# are\ of course\ valid to within an arbitrary additive constant[ This result merely
re~ects the fact that the terms Ik appear in the displacement vector u1\ which in the present steady!
state analysis\ can be determined only to within an arbitrary rigid!body motion[

Combining "25#Ð"34# with "14#\ "15# and "17# gives for y ³ 9 the result

&
u1x

u1y

uu
'� 0

D9 &
M00Uxx M00Uxy Uxq

M00Uyx M00Uyy Uyq

Uqx Uqy Uqq
' &

bx

by

bq
' "35#

where additive arbitrary constants for "u1x\ u1y# are understood\ and the elements of matrix U are
functions of "x\ y# de_ned by

Uxx � −M22

G0

a0

I1"a1\ a0#−M12b0I1"a1\ b0#−M21

G0

a0

I1"b1\ a0#−M11b0I1"b1\ b0# "36a#

Uxy � M22G0I0"a1\ a0#−M12I0"a1\ b0#¦M21G0I0"b1\ a0#−M11I0"b1\ b0# "36b#
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Uxq �"M20M12−M10M22#
I5"a1#

zl0

¦"M20M11−M10M21#
I5"b1#

zl0

¦M00M22

0
a0

I1"a1\ a0#−M00M21

0
a0

I1"b1\ a0# "36c#

Uyx �
a1

a0

M22G0I0"a1\ a0#¦a1b0M12I0"b1\ a0#¦
G0

a0b1

M21G0I0"b1\ a0#

¦
b0

b1

M11I0"b1\ b0# "36d#

Uyy � −a1M22G0I1"a1\ a0#¦a1M12I1"a1\ b0#−
G0

b1

M21I1"b1\ a0#¦
0
b1

M11I1"b1\ b0# "36e#

Uyq �
a1

zl0

"M10M22−M12M20#I4"a1#¦"M10M21−M20M11#
I4"b1#

b1zl0

−
a1

a0

M00M22I0"a1\ a0#¦
0

a0b1

M00M21I0"b1\ a0#¦X
l1

l0

D9

M00

I2 "36f#

Uqx �
G0G1

a0

"M01M22−M02M21#G6"a0#¦G1b0"M01M12−M02M11#G6"b0#

−
g1G0

a0

M00M22G1"a1\ a0#−g1b0M00M12G1"a1\ b0# "36g#

Uqy � G1G0"M00M21−M01M22#G4"a0#¦G1"M01M12−M02M11#G4"b0#

¦g1G0M00M22G0"a1\ a0#−g1M00M12G0"a1\ b0#¦g0G1

D9

M00

G2 "36h#

Uqq �
G1

zl0

D9

M00

G3[ "36i#

Examination of "35# in view of "36# and the formulas "27#Ð"34# reveals the e}ects of thermoelastic
coupling ] _rst of all\ both the coe.cients and the arguments of the functions "Gk\ Ik# exhibit the
thermoelastic parameters "o0\ o1\ h0\ h1# in the guise of the constants "G0\ G1\ l0\ l1\ a0\ a1\ b0\ b1#[ More
importantly\ the functions "G4\ G5\ G6\ I4\ I5# are in essence hybrids that combine behaviors normally
associated with purely mechanical and thermal _elds[ That is\ forms similar to "G0\ G1\ I0\ I1#
and "G2\ G3\ I2# are archetype functions that appear in solutions to\ respectively\ the isothermal
momentum balance equations and the thermal di}usion equation "Carslaw and Jaeger\ 0848 ^
Carrier and Pearson\ 0877#\ while "G4\ G5\ G6\ I4\ I5# are convolutions that pair individuals from the
di}erent archetypes[

In regard to speci_c behavior\ the functions "G2\ G3\ I2# represent disturbances that occur only
in the wake "x ³ 9# of the moving sources[ Thus\ "35# shows that the "e}ective# thermal body
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source term "bq# generates a temperature change u1 in its wake\ while the mechanical source terms
"bx\ by# create u1 everywhere[

As discussed in Boley and Weiner "0874#\ the e}ects of thermoelastic coupling may not be
important when actual numerical calculations are performed[ Examination of "39#Ð"33# and "34cÐ
e# gives evidence of such a possibility here as well\ because the very small ðsee "6#Ł thermoelastic
characteristic lengths "h0\ h1# appear in the argument denominator of decaying exponentials[ How!
ever the magnitude of those arguments is also in~uenced by the distance of the observation point
"=y=# and moving sources "d# from the welded interface[

Moreover\ "13a\b# indicate that the aforementioned manifestations of thermoelastic parameters
in certain constants occurs in such a way that the in~uence of the constants increases as the non!
dimensionalized source speed "c0\ c1# increases[ Thus\ the observations of Brock and Georgiadis
"0886# that thermoelastic coupling becomes more important at higher source speed also holds for
the present problem[ It should be noted that analogous conclusions hold for dynamic quasi!brittle
fracture "Brock\ 0884\ 0885# in terms of crack propagation speed[ Therefore\ such coupling may
be more than just formally important[

5[ Identi_cation of the critical source speed

Despite the construction of solutions\ the source speed v is so far restricted by the inequality "7#[
However\ the presence of the theremoelastic Stoneley function "11a# and its asymptotic counterpart
"18b# in the denominator of\ respectively\ the transform and asymptotic solutions suggest that a
stricter de_nition of critical speed is needed[ Brock "0886# has studied the asymptotic form S9

given in "18b# and found that it behaves much like its isothermal counterpart "Cagniard\ 0851#[
In particular\ S9 will exhibit the real zeroes v � 2vS if the thermoelastic properties of the welded
materials are such that

s1
r0"k0¦k1−s1

r0#1¦ðk0k1zs1
r0−s1

o0−"k0−s1
r0#1zs1

r0−s1
o1Łzs1

r0−s1
r1 × 9 "37a#

when sr0 × sr1 or

s1
r1"k0¦k1−s1

r1#1¦ðk0k1zs1
r1−s1

o1−"k1−s1
r1#1zs1

r1−s1
o0Łzs1

r1−s1
r0 × 9 "37b#

when sr1 × sr0\ where cf "12#

k0 �
m0s

1
r0

1"m0−m1#
\ k1 �

m1s
1
r1

1"m1−m0#
\ so0 �

sd0

z0¦o0

\ so1 �
sd1

z0¦o1

[ "38#

The terms "so0\ so1# are the asymptotic thermoelastic values of the dilatational slownesses[ Moreover\
vS\ which corresponds to an asymptotic thermoelastic Stoneley interface wave speed\ lies in the
range 9 ³ vS ³ min"vr0\ vr1#[ By means of product!splitting techniques "Noble\ 0847#\ Brock "0886#
has obtained the result

vS � G9X
"3k0−s1

o0−s1
r0#"s1

o1¦s1
r1−3k1#

1=k1so0−k0so1 = =k1sr0−k0sr1 =
[ "49#
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Table 0

vR0 "m:s# vR1 "m:s# vS "m:s#

Aluminum"0# 1746 1731 2915
Steel"1#

Aluminum"0# 1746 1715 2916
Titanium"1#

For the slowness combinations sr1 × so1 × sr0 × so0\ the dimensionless constant G9 has the form

ln G9 � −
0
p 0g

sr0

so0

f0

dt
t

¦g
so1

sr0

f01

dt
t

¦g
sr1

so1

f1

dt
t 1[ "40#

Here the f!functions lie in the range "9\ p:1# and are de_ned by

f0 � tan−0 j0

−t1h0j1h1¦k0k1h1−h0T
1
1

−k0k1j1h0¦j1h1T
1
0¦t1T1

01

"41a#

f01 � tan−0 k0k1"j0h1¦j1h0#

−t1j0h0j1h1¦j1h1T
1
0−j0h0T

1
1¦t1T1

01

"41b#

f1 � tan−0 h1

t1j0h0j1¦k0k1j0−j1T
1
0

k0k1j1h0−j0h0T
1
1¦t1T1

01

"41c#

where cf "02a#\ "12#\ "13b#\

j � z=t1−s1
o =\ h � z=t1−s1

r =\ T0 � k0−t1\ T1 � k1−t1\ T01 � k0¦k1−t1 "42#

and the subscripts "0\ 1# are understood in the equations for "j\ h#[ The other _ve "excluding
equalities as special cases# possible combinations of material slownesses give similar forms[

Asymptotic thermoelastic Rayleigh speeds "vR0\ vR1# exist for solids\ and so we also consider
them to be candidates for critical speed[ By the same process used to obtain "49#\ it can be shown
that such speeds always exist\ and are given by the general formula

vR � vrG9X 1 00−
0

m1"0¦o#1 "43#

where 9 ³ vR ³ vr and\ in this case\ the dimensionless constant G9 is given by

ln G9 � −
0
p g

sr

so

tan−0 3t1zt1−s1
o zs1

r −t1

"1t1−s1
r #1

dt
t

[ "44#

In "43# and "44#\ the subscripts "0\ 1# are understood[ In view of "6#\ it is clear from "40# and "43#
that thermoelastic coupling has only a minor e}ect on the value of the asymptotic Stoneley interface
and Rayleigh speeds[ In Table 0 values of vS are given for two combinations of thermoelastic
materials for which it exists\ along with the corresponding values of "vR0\ vR1#[ It is seen that vS for
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these cases in fact exceeds the Rayleigh speeds[ However\ to ensure non!critical behavior due to
source speed\ we replace the restriction "7# with the relation

9 ³ v ³ min"vS\ vR0\ vR1# "45#

with the understanding that vS is dropped when neither "37a# nor "37b# is satis_ed[ It should be
noted that "45# does not preclude the possibility of very rapid source motion[

6[ Some observations

This article extended the study of thermomechanical source motion over the surfaces of ther!
moelastic half!spaces to the problem of buried thermomechanical sources moving parallel to the
interface of two welded dissimilar thermoelastic solids[ The momentum balance and thermal
di}usion equations were treated in their coupled form\ and the sources were line loads that
appeared as body force terms in these equations[ These loads moved at a constant subcritical speed
so that the problem analysis was 1!D and steady!state[

Exact bilateral transform solutions were derived\ and then asymptotic forms of these solutions
were inverted analytically to give expressions for the displacements and temperature change in one
of the solids[ These expressions were in principle valid for large distances from the moving sources[
However\ the scaling distances were the thermoelastic characteristic lengths of the solids which\
being of O"09−3# mm\ guaranteed that the expressions were actually robust[

These expressions showed the e}ects of thermoelastic coupling[ In particular\ the thermal body
force term was seen to manifest itself in the solution in an e}ective thermal source term that also
exhibited one component of the mechanical body force[ Then\ thermoelastic constants were seen
to modify both the coe.cients and the arguments of the mathematical functions that comprised
the solution expressions[ Moreover\ while some of the functions themselves were archetypes that
arise either in isothermal mechanical problems or purely thermal di}usion problems\ other func!
tions were in essence hybrids of the two archetypes[ Moreover\ the thermoelastic parameters of
the two solids occurred in combinations with the source speed in such a manner that their in~uence
increased with the source speed\ thereby suggesting that thermoelastic coupling is important at
high subcritical source speeds[

The critical speed was taken to be the minimum of the two asymptotic thermoelastic Rayleigh
speeds in the two solids and*when it exists*the asymptotic thermoelastic Stoneley interface wave
speed[ This restriction avoids the possibility of unbounded behavior at the latter speed[ The
conditions for which the Stoneley speed exists were given\ as well as an exact expression for it and
the Rayleigh values[ Numerical calculations with these formulas for speci_c cases suggested that
the Stoneley value exceeds the Rayleigh values[

In summary\ then\ the response of solids formed from welded dissimilar thermoelastic materials
to moving thermomechanical body forces is in~uenced at higher source speeds by thermoelastic
coupling[
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