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Abstract

The analysis of rapidly-moving thermomechanical surface sources is extended to the study of buried
thermomechanical sources that move parallel to the interface of two welded dissimilar thermoelastic half-
spaces at a constant subcritical speed. The sources are manifest as body force line loads in the coupled
equations of thermoelasticity, and a 2-D steady-state situation is treated. Exact integral transform solutions
are obtained, and expressions for the displacements and temperature changes are generated by analytical
inversion of robust asymptotic versions of the transforms.

These expressions show that thermoelastic coupling effects increase with source speed, and that the thermal
source is always manifest in combination with a component of the mechanical source, i.e. an effective thermal
source term exists. The expressions also exhibit component functions that are in effect hybrids of functions
that are seen in purely thermal and isothermal elastic solutions.

The critical source speed is defined as the minimum of the two asymptotic thermoelastic Rayleigh speeds
in the half-spaces and, when it exists, the asymptotic thermoelastic Stoneley speed. Exact expressions for
these speeds are given, and used to present some typical values. © 1998 Elsevier Science Ltd. All rights
reserved.

1. Introduction

Brock and Georgiadis (1997) and Brock et al. (1997) have treated rapid motion by ther-
momechanical loads over the surfaces of thermoelastic half-spaces. These half-spaces are modeled
by the coupled forms of the momentum balance and thermal diffusion equations (Chadwick, 1960 ;
Boley and Weiner, 1985). The coupled thermoelastic studies demonstrate that, due to the existence
of a small, i.e. O(10~*) um, thermoelastic characteristic length in the equations, robust asymptotic
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solutions can be obtained analytically. Moreover, these solutions show that the influence of
thermoelastic coupling is noticeable, especially at higher load speeds.

This work extends these efforts by considering buried thermomechanical sources that translate
parallel to the interfaces of dissimilar coupled thermoelastic half-spaces that are rigidly welded. As
in the previous work, the sources are line loads moving at a constant speed, so that a 2-D steady-
state analysis can be performed in terms of half-planes. In this case, only sub-critical speeds are
considered.

In the next section, the problem is formulated, and addressed by transform methods. From
exact transform solutions, robust asymptotic analytical expressions for the displacements and
temperature changes are then obtained by inversion. These expressions show the same types of
thermoelastic coupling effects seen—especially at high source speeds—by Brock and Georgiadis
(1997) and Brock et al. (1997). In particular, thermoelastic constants influence both the coefficients
and arguments of various functions that constitute the expressions. In the present work, moreover,
some of the functions themselves are seen to be, in essence, hybrids of responses seen in purely
mechanical and thermal analyses. It is also found that the body force term in the coupled thermal
diffusion equation is always manifest in solution expressions in a linear combination with the body
force component of the momentum balance equation that lies parallel to the source motion
direction. That is, the displacements and temperature change depend on pure mechanical loading
and an effective thermal loading.

2. Problem formulation

Consider two half-spaces of dissimilar isotropic homogeneous linearly thermoelastic materials
that are rigidly welded together over the x'z’-plane, where (x’,)’,z") are Cartesian coordinates.
The half-space y” > 0 is denoted as solid 1, and its field variables and thermoelastic properties
carry the subscript 1; analogously, solid 2 comprises the half-space y” < 0, and its field variables
and thermoelastic properties carry the subscript 2. Both solids are initially at rest at the uniform
(absolute) temperature 7;,. Then constant thermomechanical body forces are induced at time ¢t = 0
along an infinite line that lies parallel to the z’-axis and translates in the positive x’-direction at a
subcritical constant speed v. No generality is lost by fixing the line’s path of travel at a distance d
from the interface in solid 1 (3" > 0).

For convenience the moving Cartesian system

x=x—vt, y=y, z==2 (1)
is introduced so that the line of sources is always located at (x, y) = (0, d). No dependence on z is
expected, so that solids 1 and 2 can be treated as the half-planes y > 0 and y < 0, respectively, and
the relevant problem geometry can be represented as Fig. 1. There the constants (B,, B,) are the
x- and y-components of the mechanical body force, while the constant B, represents the scalar
thermal body force. In terms of the moving coordinate system, time derivatives take the form
(Bowen, 1989)

a 0
or Uox

2
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Fig. 1. Thermomechanical sources moving near interface of welded solids.

where the first operator is to be taken in the moving system, and the second operator corrects for
the motion of the system. If, as in this analysis, the steady-state is of interest, then the first operator
in (2) can be neglected, and all the field variables treated as functions of (x,y) only. Then the
governing steady-state coupled thermoelastic field equations for solid 1 (y > 0) can be obtained
from, respectively, the momentum balance and thermal diffusion laws (Chadwick, 1960 ; Boley
and Weiner, 1985 ; Achenbach, 1973) as

az
uVau+ (A+ VA — 50 (3A+2u)VO— pv? 672 +Bé(x)o(y—d) =0 (3a)
X
0
kV20+vaY [c.p0+ %0 (B32+2W) TyA]+ B,6(x)o(y—d) =0 (3b)

where the subscript 1 is understood. In (3) ¢ is the Dirac function, u(x,y) = (u,,u,) is the dis-
placement vector, 0(x, y) is the change in temperature from the value T\, B =(B,, B,), A is the 2-
D dilatation, (4, n) are the Lamé constants, p is the mass density, and (k, x,, ¢,) are, respectively, the
thermal conductivity, coefficient of expansion and specific heat. Introduction of the thermoelastic
parameters

[A+2 1 1
Vg = * 'ua U, = \/;a Sq =", 8 =" (43.)
P p Uq U,
v v

m=-", ¢=— (4b)

U, Vg

kv, Ty (% )
%= n(@d=3m*), h= ime” ° (f’(mv> (4¢)

allows the governing field eqns (3) to be written as

2

a1
V2u+t (m> — VA4 V0—m>c 8—‘2' + BOI(—d) =0 (5a)
X
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0 m’e B
ViO0+c—(0——A |+ —1 X —d) =0.
A C@x<0 ” ) e o(x)o(y—d) =0 (5b)

vYd

In terms of (4), the associated constitutive equations (Achenbach, 1973) give the 2-D stress tensor
1
ﬁg = Vu+uV+[(m2—2)A+x(9]£ (6)

where [ is the identity tensor. In (4) the quantities (v, v,) are the isothermal dilatational and
rotational wave speeds, respectively, and (s, 5,) are the corresponding slownesses, so that (m, y, ¢, €)
are dimensionless, and / has the dimensions of length. In particular, ¢ is the dimensionless source
speed, while / is the thermoelastic characteristic length and ¢ is the well-known (Chadwick, 1960)
dimensionless coupling constant. It can be shown (Sokolnikoff, 1956 ; Chadwick, 1960 ; Brock,
1992) for many materials that

m>/2, ¢=0(10"2), h=0(10"*) um. (7)

The order of ¢ in particular is often used to justify dropping the corresponding term from (5b),
thereby uncoupling this thermal diffusion equation from the momentum balance eqn (5a) (Boley
and Weiner, 1985). Equations analogous to (4)—(7) exist for solid 2 (y < 0), with subscript 2
understood, but no (B,, B)-terms present. For now, subcritical v will be taken to mean

v < min(v,,,v,,). ®)

That is, the source speed does not exceed the lowest rotational wave speed among the two solids.
The welded bond between the two solids implies continuity of displacement, tractions, temperature
change and heat flux along the interface, i.e.
00, 00

Uy —Uy =0,y —O0yyp =0, =0y = 0,—0, = aiyl - 57)/2 =U. ©)
In addition, experience with 2-D versions of the purely mechanical Kelvin problem (Sokolnikoff,
1956) suggest that (u,0,) and (u,,0,) should behave no worse than logarithmically as

x*+73? — o0, and should be continuous for all y > 0, x # 0 and y < 0, respectively.

The problem formulation defined by these conditions and (4)—(9) is tractable, but the Dirac
function nature of the non-homogeneous terms in (5a,b) for y > 0 suggest (Stakgold, 1967) the
following alternative formulation : if the solution fields (u{™, 0{™) and (u{™, 0{™) are associated
with, respectively, the regions 0 < y < d and y > d, the aforementioned continuity combined with
integration in y across the line y = d gives the matching/jump conditions

ult —u =0 —0) =0 (10a)
u' ) ouo d B.

Gy T Ay D) = ) (100)
o\ oo\ o\ oo\

5 B,
+ (m7—1) [5(u(1“—u(1))+ }i_xl(@ﬁ“—@ﬁ)) = — 24(x)
X Hy

dy dy dy ay

(10¢)
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o0\ 00\ mec\ 0 B
h - + —W\P =) = — 7 5(x 10d
'< dy 0y ) ( % )l a0 o) (e, O (10d)

along y = d for the two fields. Equation (9) then gives the matching conditions for the fields
(w$™,01”) and (u,0,). In this manner, an alternative formulation of three layers
(y < 0,0 <y<d,y>d)arises, but one in which the governing field equations are now all homo-
geneous, i.e. the form of (5a,b) less (B, B,) holds for all three layers. This procedure avoids the
necessity of finding particular solutions. The alternative problem formulation is addressed by
transform methods in the next section.

3. Transform solution

To solve the problem formulated above, the bilateral Laplace transform (van der Pol and
Bremmer, 1950) and its inverse operation

i

— 0

« 1
Ir= J fx)erdx, flx) = 2Jf* e dp (11a,b)

are introduced. Here p is, in general, complex and integration in (11b) is taken along the Bromwich
contour. Application of (11a) to (5) with (B, B,) dropped out gives the following set of general
transform solutions :

u¥
F B
2 | =| o, o 0| B e +B e (12a)
L —Kp —Kp =21l C.e"+C_e ™
w
u; I a (A, e+ —A_e ") |
1 00* -1 =1 —p ‘ :
Py | =|o o o ||*BETB T (12b)
. -2 =2 Kp l(cJr e’ —C e*ﬁy)
Lup ™ ] L |

Here the coefficients (4., B, C,) are arbitrary functions of p and

m2
N R R N (13a)

a+=\/1+;(f+i1_)2, b=1-m’c’>, K=m’c>-2 (13b)
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1\ e mtcie
2t, = /(J cpi\/z> —i—h, W, 0 = o ph (13¢)
where Re(x, f) = 0 in the cut p-plane. It should be noted that restriction (8) guarantees that the
constant b is real and positive.
Because there are three layers (12a,b) require that 18 coefficients be determined from (9), (10)
and boundedness conditions. The latter in particular require that (u{™, 0{")* and (u,, 0,)* not
become unbounded as y - oo and y — — oo, respectively. Therefore, in (12a,b) we must have

Application of (11a) to the matching conditions (9) and (10) in view of (12) and (14) gives twelve
equations that can be solved analytically for the other coefficients. Specifically, we have

A 1 ) il ]
B = o —o B, (152)
L C7 ] " 1P (0, —w,2)pCy |

AT | L4, ] (A

B{") = o —o B, +| B2 (15b)
Lo | T (o, o 0G| Lo

where (42, B{”, C{2)) are given by

B Wy _
E.w,,—D,w,_ E,w, —D,o,_ <1+ 0 > =

4 ayi by p A,
B¢~ _L 0 Wy 4 B (16)
T o0, | i@ —Esoy Doy —E o, 1+a 5. 24
C(li) 1-Y2 C2+
b
p(Q+a,,by) p(Q+a,_by) bflpz‘f‘Pl
2
and (A4,,, B,,,C,.) are, in turn, defined by
Ay 1 a, Ly, a,_Ly, Ly; Ay
B, pT —ay Ly, —a _ Ly, Lo By | 17)
pCsy a, b,Ly, a,_byLs, byLs;s PzCo
The coeflicients of the matrix L are
Ly, =Q(a,_+a, )b P,—b P, +S_w;, (18a)
L, =Qa+a_ )b P,—b,P))w,_ +S;0,_ (18b)

Li;=(a,y—a,_)(P,Q—Piar_by))w, 0, _
+(a_+a, )(Q—a, b)w,_w,_ —(ay, +a,_)(Q—a,_by)w, 0w, (18c)
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Ly, =Q(a,_+a>, )by P,—b,P))w,, +S 0,4
Ly, =Qi(a, +a,,) (b P,—b, P, +S5, 0,

Ly; =(a,-—a, )(P,O—Par, by)w, 0, _

+(a ta ) (Q—a,_by)w,,wy, —(a; - +a,, )(Q—a,,by)w, _m,,

Ly =Q(ayy ta ) (Q—ay,_b)wy, —Q(a, - +a, )(Q—ar . b)o,

+(ary —a, )(PQ—Pra; _b))w,

Ly, =Q(a,,+ar, )(Q—a,_b))w,, —Qi(a,, +a, )(Q—ar, by)w,_

+(ay, —a, )(PyQ—Pia; . b))w, _

Ly =(ay —a,_)(ay, —a,_) (0,0, — P Pyw,,o,_)

+Q(a - tar, ) (Pra; . —Piay Jo, 0, +Q(ay, +a, ) (Pray- —Pray  )o, o,

—Qi (a1, tar )(Pra_ —Piay )o, w0y —Qy(a - +ay_)(Pra . —Piay ), o, .

In these formulae, the thermomechanical source terms are manifest in the quantities

[ o o 1 7
AO eoc]+¢l Lo p TI-O- bx
w w
Bpent|= | e S0 L
1— 1-
C, el 8 b,
=L —1 0
L P i
o, _ ,_ 1 ]

s —ay i d LI p Lo
Ay e 0} 0) 1 2
BE) efac,_d — . (XH— ;+ T by

1— 1—

66”"" ﬁ bq

=L 1 0
L P i
where

S SRy
T emicd),” T umied),” T \pawg), \wrhe), T

The other previously-undefined quantities in (15)—(18) are

Q a a,_ a a,_
(E+1E7E+5E+)=1|:1_<2+12>2+a2>:|
- Wy —wW— ayy 4y dy_ dpy

1509
(18d)

(18e)

(18f)

(18g)

(18h)

(18i)

(19a)

(19b)

(20a—)

(21a)
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1 Ay, Ay Qp, Qp_

(D+,D,Di,D;):wl+_wl[P,+P2<al+,al,al,al+ﬂ 21b)
and

S=0b,P,—b,P)(a,,—a ) ar; —ar,_ ) Q0,, 0, —Qr0, ,®,_)

+@_+a, )o,_w, S, +(a,+a,,)o,,0,,S_

—(a.+a o, 0, S, —(a,_+ar,)o,_0,, S+ (22a)

S, 1 a,.a», a,.b,+a,. b, a, a,, b,b,

1 Q,Q

S LS R b B B 2y

S+ 1 ay ar_ a b,+a,_ b, a, a,_ —b,P3?
where

(um?c?), 0 (,um )
2 —1) T 2 —p)

It should be noted that the common denominator term S is the steady-state coupled thermoelastic
Stoneley function (Stoneley, 1924) for the two welded solids. Indeed, the constituent functions
(S.,S_,S5,,S:) have the same form as the classical isothermal Stoneley function (Cagniard,
1962). Examination of (20c) shows, moreover, the coupling behavior between the thermal source
term B, and the mechanical source term B, that was noted at the outset. This coupling produces
an effective thermal source insofar as solution response is concerned.

With (14)—(17) in hand (12a,b) give the complete transform solutions for the fields (u{*™, 0(*)
and (u,, 6,) in the layers (0 < y < d,y > d) and (y < 0), respectively. These solutions are exact,
but largely due to the p-dependence of the quantities (., a,,) [see (13b,c)], their inversion by
means of (11b) must be carried out numerically. While several efficient numerical schemes are
available, e.g. Duffy (1993), we use here an asymptotic form of the transform solutions are quite
robust, yet which allow inversions to be performed analytically.

Py=1-Q,, P,=1-Q,, Q=1_Q1_Qz, Q=5 —- (23)

4. Asymptotic transform results

It is known (van der Pol and Bremmer, 1950) that asymptotic forms of the bilateral Laplace
transform valid for small |pL| give inversions that are valid for large |x/L|, where L is any finite
scaling length. For the previous results, therefore, we substitute (14)—(17) into (12a,b) and treat
the expressions created as linear combinations of the loading parameters (b,, b,, b,). The coeflicients
of each parameter are then expanded for small |p|, and only the lowest-order terms preserved. The
key step in this operation is that (13) yields the asymptotic forms

o, =/ —ip, oa_ =a/—p?, f a, W, =——, O_=—7 (24a)

=
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c? m? m*c’e c
= [1- r= RS 24b
¢ 1+¢ X 7 x(1+¢) ’ h( 9 ( )

where it is noted that (7) and (8) guarantee that a is a positive real constant, and v,./1+¢ is an
asymptotic thermoelastic (adiabatic) dilatational wave speed (Achenbach, 1973). However, the
forms (24a) are actually only valid for |ph| « 1, so that in view of the previous observation, the
inversions of the asymptotic forms of (12) are valid for |x/A| > 1. But (7) shows that (4, h,) are of
the same very small magnitude order, which implies that the inversions are robust. This result is
not affected by the scale of the other characteristic length, ¢, which appears only in the exponential
arguments of the source term functions (A4,, By, Cy) and (45, By, Cp).

Because (a, b, A) are real and positive, the condition Re(a,, f) = 0 in the cut p-plane which was
imposed for boundedness upon (12a,b) requires that the asymptotic forms of both («_, ) given
by (24a) have the branch cuts Im(p) = 0, |Re(p)| > 0, while o, must exhibit the cut Im(p) = 0,
Re(p) > 0.

To illustrate these forms, we present those for the displacement and temperature change: for
y < 0 the asymptotic forms

S
\/TP ey ~hary
u%, b, b, b —
\/; 2y — < i : M2,\‘+ Jsz_i_ ‘12M20> eGZ\/*P ¥ (253)
1 P P VTP b/
e 2
,0;1‘
L P i
0 _Bn Cil 0 _Bb Cb
1 1
M2n = 0 a2Bn - ;Cn s M2U = _\/ZA’) Clth - F Ch (25b’c)
2 2
—T,A4, —7,B, 0 ~To4,/p 0 0
hold, where the subscript n = (x, y) in (25b) and
oA ]
1 B 1 O M13M32_M12M33 M12M23_M13M22 Nll
M, =D 0 M, —M>; N, (26a)
0
1 C O —M32 M22 N31
_Ml] *
A, D
1 B 1 Mio M13M32_M12M33 M12M23 M13M22 N12
M, 7 == N 26b
111 DO 0 M33 —M23 N22 ( )
T 0 — M, M, .
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_ D
A, 0 0 0 Nis
B = - M, M, N (260)
"|" Do | My My, —My My, Miy; 0 j‘v‘ *
-0 My My, —My My, —M;, 0 .
and the elements of the non-symmetric matrices M and N are given by
(M, M\, M,
M21 M22 M23
| M5, Ms, M,
r [ A
—I,Q, <1+ ;) 1Py —7,Q, —" -‘
1
_ A
= —ﬁ(r]P1+r291) r, (Pz—“zP]) T, (1— Q) 27)
a; a; a b,
; b,
L _bl\/ A 0—a,b, FP2_P] i
2
’— Vl i [ Fl T
Ny, \/Z - N>, a,
Ny, | = —71 37\/7&'1){ Ny, |= | =T, | e “v/-rd (28)
Ny; 1 Ny 1
L \/21_ L 9]
N31 _bl
N32 = —1 e_bi\/ipzd.
In (25)—(28) the definitions
QIFIFZ ;L'Z
D, = M| = 1 — 29
0 | | albz + j.] SO ( 9d)
Sy = Q2+a1blazb2 +ngz(a1b2 +azb1)_a1blpg_a2bzp% (29b)

hold, where (29b) is the asymptotic thermoelastic Stoneley function for v, which has essentially
the same form as its isothermal counterpart (Cagniard, 1962).
For 0 < y < d the asymptotic forms are

ut, ]
N/ o A=
~—u¥, b, b, b, B -
2 \/; y :< - 2M1x+ ;}M(l}")—i_iM(lﬁ) e pr(. )
1 % P vV 7P P/ PP o=
B
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e —21py

b b, b —
+< - 2N1«"+7}N1y+ : 2N19> e_al\/_p ' (303)
Ny 4 4 C"ih]\/?’v
0 —— —b o 1 -1
a, 1
M,= |0 1 Ll MP =] 0 —a |,
1
0o - ~n o0
a,
_ LA
0 0
a,
M = l -10 (30b)
/2 0 o
L A1 i
i 1 T _ _
0 ——B, C, [ ,
I, 0 Fle G
1
Nu= |0 =B Gl No= [Va a1 (30c.d)
1 1 1—~1 b 1—~1 b bl b
, A ,
A B 0  Ap 0 0

where the subscript # denotes (x, y), the superscript (—) on (uy, 6,) is understood, and

A, M, M, M ||4,| |4, it 0 0 A,
B,=]0 % 5 || Ba], | By =] My —M5 —M5s || By | (3la,b)
C, 0 5, —M55]|C, C, —Mj, 5 — M55 ]G,

Here the non-symmetric matrix M’ is defined by

i )"2 —‘
-0, (1- 1 M, M,
My My, M, ‘
21 22 23| = M,, I, <p2_|_azpl> —T, <1+ Q > : (32)
’ ’ ! a, a,b,
31 32 33
b,
L M, O+ayb, P+ P i

b,

Finally, the asymptotic forms for y > d are
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ut,
\/_7 ey —Aird=y)
4 b b b _—
’ M+ M+ MW)prwﬁ
X p y

= (5 Ve

1 0% N/ P d=y)
L P i
efx/Tll’)’
b b, b —
+<«/XN1.\»+}N1,V+11N10> TV (33a)
_p2 p A/ _pz e_bl\/_ipZy
_ LA
0 -1 1 0 'R 0
1
1
M =10 —a ek M} = -1 o (33b)
1 P
TR T T, %0 0
L v1

where the superscript (+) on (uy, 6,) is understood.

5. Solution expressions by transform inversion

For a brief examination of solution behavior, attention is focused on solid 2 (y < 0) : study of
(25) in view of (28) indicates that (u,, 0,)* are linear combinations of generic functions of the
transform variable p. These functions are

GH(o, B) = eV 70 Gi(a, B) = \/\/AGT(a, B (34a,b)
4
= G¥
Gf = oV PV G = (34c,d)
N
G¥(o) = &/ PP Gi(a) = \/\/iGz-%oo (34e.)
4
G*(f) = ie\/jp(\/ﬂv*ﬁ\ﬁd) (34¢)
N TP
and
1 1 1
I, f) = GHou )k = 1,2), It =G, IK@) = GH)(k = 5,6) (35a—c)

where (o, f) are employed in this instance as positive real constants. In view of the branch cuts
required for the asymptotic forms (24a), substitution of (35a) into the inversion operation (11b)
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allows a Bromwich contour that coincides with the entire Im(p)-axis. Because oy —fd < 0 for
y < 0 while Re(\/ —p?) = 0 in the cut p-plane, exponential decay of the resulting integrand in
(11b) is assured for Re(p) > 0 when x < 0 and for Re(p) < 0 for x > 0. Therefore, Cauchy theory
can be used to change the integration path in (11b) to a contour that runs around the branch cut
Im(p) =0, Re(p) > 0 when x < 0, and around the branch cut Im(p) = 0, Re(p) < 0 when x > 0.
The result is the real integral

1 [
G (2.p) = — nj e " sin(oy — fd)p dp (36)
0
which, by use of a standard integral table (Gradshteyn and Ryzhik, 1965) can be evaluated as
1 oy — pd
G =~ P (37)

T (oy— )
By a similar procedure, the result

X

G f) = — (38)

7+ (oy— B’

is obtained from (34b).
For (34c¢) the integrand branch cut is Im(p) = 0, Re(p) > 0, so that use of exponential decay
and Cauchy theory give a zero result for x > 0 but the formula

Gy = — % j " sin(hay— /1 d/pdp (39)

0

for x < 0. The same integral table then gives

boy=oad 1
Jr(—=x)*?

and a similar procedure for (34d) gives

I o
G, = eV (¢ < 0). (41)

—TX

The form (34e¢) is in essence a product of forms similar to (34a,c). Therefore, the convolution
theorem for bilateral Laplace transforms (van der Pol and Bremmer, 1950) can be used with (37)
and (39) to produce the real integral

2y d?

Gula) = — tx\/Zde"C e~ 4 dr “2)

7.53/2 t3,ﬁ2 (x_i_t)z_i_azyz'

Similarly, it can be shown that
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), d?
Jhd [Ze x4t
Ge(a) = — dt 43
6(®) 32 J 132 (x+t)2+oc2y2 (43)
Inversion of (34g) follows by inspection from (43) as
2y
Ay [CeT a x+1
G =" dr. 44
7(ﬁ) 7_[3/2 J\ [3’/2 (X+t)2 +ﬁ2d2 ( )

Finally, inversions of (35) follow essentially from indefinite integrations with respect to x of the
functions (G, G, Gs, Gy) :

X

1 1
Il(oc,ﬁ)——%tan ay— pd (45a)
Lo = —'m 1 © (45b)
o, B) = ——In —
’ n (ay —pd)’
SAd— /2
I =2erf<m> (x < 0) (45¢)
2./ —x
2, d?
\/Zd (©e” 4 x+t
I5(2) = — R N tan~' " dr (45d)
2y d?

Jhd (2w [(x+y) 4y
L@ = =S5 | e e (45¢)

The results (45a—¢) are, of course, valid to within an arbitrary additive constant. This result merely
reflects the fact that the terms [, appear in the displacement vector u,, which in the present steady-
state analysis, can be determined only to within an arbitrary rigid-body motion.

Combining (36)—(45) with (25), (26) and (28) gives for y < 0 the result

Urx 1 Ml 1 Uxx Ml 1 ny qu bx

Uy | = F M] 1 ny Ml 1 va Uvq by (46)
0

00 Uc/x qu Ut/q bt/

where additive arbitrary constants for (u,,, u,,) are understood, and the elements of matrix U are
functions of (x, y) defined by

I I
U, = —Mji; ?llz(azsal)—M23b1[2(a2>b1)—M32 7112(b2>a1)_M22b112(b23b1) (47a)
1 1

U, = M;;I'1 1, (ay,a,) —Mys1i(ay, by)+ M5, 1 (by,ay) — Moy 1 (by, by) (47b)
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Is(a>) 15(b>)

U,\—q:(M.%le% leMzz) +(M%1M22 M21M32)
N \/Z
1 1
+M11M33212(02,01)—M11M3zzlz(bzaal) (47¢)
1 1
a, I,
ny :;M33F111(a2aa1)+a2blM23Il(b2aal)+ b, M, 1,(by,ay)
1 a,

b
+ 5 Ml (b)) (47d)
2

I, 1
va = —a, M3 I (ay,ay) +a, Mys1h(ay, by) — M32]2(b2>a1)+ Mzzlz(bZab ) (47¢)

I5(b,)

b/

: (M M5 — My M) s(ay) +(My My, — My Ms»)

a
yqe =
NG

1
M11M3211(a2:a1)+ @b, 1, (470)

rr
Up = 2(M12Mn M 3M3,)Gr(a)+T2by (M, Mys — M 3M5,)Go(by)

. 72T

1

v, = 0 (M My, =M, M33)Gs(a) + (M, My — M3 M5,)Gs(by)

M, My3Gy(as,a,) =70, M My3Gy(ay,by)  (47g)

D
+V2F1M11M33G1(02:al)_Vle1M23G1(02:b1)+V1F2M70G3 (47h)

11

D
I Dy
Yo = M11

(471)

Examination of (46) in view of (47) and the formulas (38)—(45) reveals the effects of thermoelastic
coupling : first of all, both the coefficients and the arguments of the functions (G, ;) exhibit the
thermoelastic parameters (&, &, /1, 1,) in the guise of the constants (I'}, I'5, 4y, 4,, a,, a», b, b,). More
importantly, the functions (Gs, G, G4, Is, 1) are in essence hybrids that combine behaviors normally
associated with purely mechanical and thermal fields. That is, forms similar to (G,, G,, 1}, 1)
and (G;, G4, I5) are archetype functions that appear in solutions to, respectively, the isothermal
momentum balance equations and the thermal diffusion equation (Carslaw and Jaeger, 1959 ;
Carrier and Pearson, 1988), while (Gs, G, G, Is, 1) are convolutions that pair individuals from the
different archetypes.

In regard to specific behavior, the functions (G5, Gy, I5) represent disturbances that occur only
in the wake (x < 0) of the moving sources. Thus, (46) shows that the (effective) thermal body
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source term (b,) generates a temperature change 0, in its wake, while the mechanical source terms
(b, b)) create 0, everywhere.

As discussed in Boley and Weiner (1985), the effects of thermoelastic coupling may not be
important when actual numerical calculations are performed. Examination of (40)—(44) and (45¢—
e) gives evidence of such a possibility here as well, because the very small [see (7)] thermoelastic
characteristic lengths (%,, #,) appear in the argument denominator of decaying exponentials. How-
ever the magnitude of those arguments is also influenced by the distance of the observation point
(]y]) and moving sources (d) from the welded interface.

Moreover, (24a,b) indicate that the aforementioned manifestations of thermoelastic parameters
in certain constants occurs in such a way that the influence of the constants increases as the non-
dimensionalized source speed (c,, ¢,) increases. Thus, the observations of Brock and Georgiadis
(1997) that thermoelastic coupling becomes more important at higher source speed also holds for
the present problem. It should be noted that analogous conclusions hold for dynamic quasi-brittle
fracture (Brock, 1995, 1996) in terms of crack propagation speed. Therefore, such coupling may
be more than just formally important.

6. Identification of the critical source speed

Despite the construction of solutions, the source speed v is so far restricted by the inequality (8).
However, the presence of the theremoelastic Stoneley function (22a) and its asymptotic counterpart
(29b) in the denominator of, respectively, the transform and asymptotic solutions suggest that a
stricter definition of critical speed is needed. Brock (1997) has studied the asymptotic form S,
given in (29b) and found that it behaves much like its isothermal counterpart (Cagniard, 1962).
In particular, S, will exhibit the real zeroes v = + vy if the thermoelastic properties of the welded
materials are such that

S (k) +1c; _Sr21)2 + K1 K/ Sh— S — (1, _Srzl)z\/sfl —3822]\/331 —5, >0 (48a)
when s,; > s,, or
851y + 10, —55)* 4 [1 Ko~/ 87— 51 — (i —332)2\/532 _5.321]\/532 —s571 >0 (48b)

when s,, > s,,, where cf (23)

P :ulsrzl oo — ,u2532 ¢ = Sa1 G = Sa2
2w —w)” T 22— T 4/1+£1’ N 4/1+82'

The terms (s,;, 5,,) are the asymptotic thermoelastic values of the dilatational slownesses. Moreover,
vg, which corresponds to an asymptotic thermoelastic Stoneley interface wave speed, lies in the
range 0 < vy < min(v,,,v,,). By means of product-splitting techniques (Noble, 1958), Brock (1997)
has obtained the result

(49)

(4, —531 _SrZI )(332 +sz —4K,)

2|K28, — K18 | [K28,1 —K15,5] '

vs = Gy (50)
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Table 1
vpi (m/8) gy (m/8) vs (m/s)
Aluminum(l) 2857 2842 3026
Steel(2)
Aluminum(1) 2857 2826 3027
Titanium(2)

For the slowness combinations s,, > 5., > s, > 5,;, the dimensionless constant G, has the form

1/ dt 522 dr sz dt
InG, = _<J ¢1+J ¢12+J ¢2> (51)
T\Js, t . t 525 t

Here the ¢-functions lie in the range (0, 7/2) and are defined by
— 2 éany Ko, —i, T3

¢, =tan"' ¢ (52a)
1 l — kK260, +Eam TT+1°T7,
— tan—! k1K (Em2+Eom1)
$12=tan”'— s o7 (52b)
S+ omTi—Em T+ T,
r +r 1,6 —E T
¢, = tan~" 1, Simes 1628 — & T (520)

Tk o —Em T3+ T,
where cf (13a), (23), (24b),

E=JIP=sl, n=JIt=51, T\=x,—1, Tro=1,—1, T;,=K+K,—1 (53)
and the subscripts (1,2) are understood in the equations for (£,#). The other five (excluding
equalities as special cases) possible combinations of material slownesses give similar forms.

Asymptotic thermoelastic Rayleigh speeds (vg;,vg,) exist for solids, and so we also consider
them to be candidates for critical speed. By the same process used to obtain (50), it can be shown
that such speeds always exist, and are given by the general formula

1
Up = U,GO \/2 <1— M) (54)

where 0 < vz < v, and, in this case, the dimensionless constant G, is given by

1 [ 42 /1* —s2/s? —1* dt
InG, = J tan~' —

B Qr-s)?

In (54) and (55), the subscripts (1, 2) are understood. In view of (7), it is clear from (51) and (54)
that thermoelastic coupling has only a minor effect on the value of the asymptotic Stoneley interface
and Rayleigh speeds. In Table 1 values of vy are given for two combinations of thermoelastic
materials for which it exists, along with the corresponding values of (vg;, vg,). It is seen that vg for

(55)

¢
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these cases in fact exceeds the Rayleigh speeds. However, to ensure non-critical behavior due to
source speed, we replace the restriction (8) with the relation

0 <v < min(vg, Vg, Vg2) (56)

with the understanding that vy is dropped when neither (48a) nor (48b) is satisfied. It should be
noted that (56) does not preclude the possibility of very rapid source motion.

7. Some observations

This article extended the study of thermomechanical source motion over the surfaces of ther-
moelastic half-spaces to the problem of buried thermomechanical sources moving parallel to the
interface of two welded dissimilar thermoelastic solids. The momentum balance and thermal
diffusion equations were treated in their coupled form, and the sources were line loads that
appeared as body force terms in these equations. These loads moved at a constant subcritical speed
so that the problem analysis was 2-D and steady-state.

Exact bilateral transform solutions were derived, and then asymptotic forms of these solutions
were inverted analytically to give expressions for the displacements and temperature change in one
of the solids. These expressions were in principle valid for large distances from the moving sources.
However, the scaling distances were the thermoelastic characteristic lengths of the solids which,
being of O(10~*) um, guaranteed that the expressions were actually robust.

These expressions showed the effects of thermoelastic coupling. In particular, the thermal body
force term was seen to manifest itself in the solution in an effective thermal source term that also
exhibited one component of the mechanical body force. Then, thermoelastic constants were seen
to modify both the coefficients and the arguments of the mathematical functions that comprised
the solution expressions. Moreover, while some of the functions themselves were archetypes that
arise either in isothermal mechanical problems or purely thermal diffusion problems, other func-
tions were in essence hybrids of the two archetypes. Moreover, the thermoelastic parameters of
the two solids occurred in combinations with the source speed in such a manner that their influence
increased with the source speed, thereby suggesting that thermoelastic coupling is important at
high subcritical source speeds.

The critical speed was taken to be the minimum of the two asymptotic thermoelastic Rayleigh
speeds in the two solids and—when it exists—the asymptotic thermoelastic Stoneley interface wave
speed. This restriction avoids the possibility of unbounded behavior at the latter speed. The
conditions for which the Stoneley speed exists were given, as well as an exact expression for it and
the Rayleigh values. Numerical calculations with these formulas for specific cases suggested that
the Stoneley value exceeds the Rayleigh values.

In summary, then, the response of solids formed from welded dissimilar thermoelastic materials
to moving thermomechanical body forces is influenced at higher source speeds by thermoelastic
coupling.
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